Misc

Happy 1024!

AI搜索关键词

1
2
3
根据搜索结果,同时包含“star”、“boat”、“dream”、“water”、“sky”这些元素的诗词是元代诗人唐珙的《题龙阳县青草湖》中的名句:“醉后不知天在水,满船清梦压星河。”

这句诗描绘了诗人醉卧扁舟,仰望星空,感受着梦境与现实交融的奇妙体验。诗中的“天在水”指的是天上的银河映照在水中,而“满船清梦压星河”则形容了诗人的梦境如同满载的船只,沉沉地压在了璀璨的星河之上。这句诗通过对自然景象的描绘,表达了诗人对梦境的留恋以及对现实的失意与失望。

Crypto

ECC-DH

共享密钥等于其中一方的私钥乘以另一方的公钥

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
a = 10809567548006703521
b = 9981694937346749887
p = 25321837821840919771
E = Curve(a, b, p)

findProof.main()
G_x = int(input("[+] Give me the G_x\n> "))
G_y = int(input("[+] Give me the G_y\n> "))
G = Point(G_x, G_y, E)
print(f"[+] Share_G : {G}")

b = randint(1, E.p) # Bob's private key
B = b * G # Bob's public key
print(f"[+] Bob_PubKey : {B}")

A_x = int(input("[+] Give me the Alice_PubKey.x\n> "))
A_y = int(input("[+] Give me the Alice_PubKey.y\n> "))
A = Point(A_x, A_y, E) # Alice's Public Key
print(f"[+] Alice_PubKey : {A}")

Share_Key = b * A
Cipher = AES.new(MD5(Share_Key.x), AES.MODE_ECB)
pt = Cipher.decrypt(bytes.fromhex(input("[+] Give me the ciphertext\n> ")))
print(f"[+] Bob get the flag : {pt.decode()}")
1
2
3
4
5
6
7
8
9
10
11
┌──(root㉿Spreng)-[~]
└─# nc 118.195.138.159 10004
[+] sha256(XXXX+htC8hwrveKHEj447) == ffd95f4724211f4be013a17cad0d77c7914cd1cbc0f5200aa57f3bbc1d3de00c
[+] Plz tell me XXXX: DLrg
[+] Share G : (22565311448306005908,1397916078140553774)
[+] Alice_PubKey : (9250488053827849960,15122360881016255980)
[+] Give me the Bob_PubKey.x
> 10333552860092078375
[+] Bob_PubKey : (10333552860092078375,11655164729158644779)
[+] Alice tell Bob : c06e8014b5e95178c688f177d0c28194a742fb67c042a34a9c08ece27e2670780ed81630a3cecaf3df343eeea32d2116

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
请输入proof: htC8hwrveKHEj447
请输入target_hash: ffd95f4724211f4be013a17cad0d77c7914cd1cbc0f5200aa57f3bbc1d3de00c[+] sha256(XXXX+htC8hwrveKHEj447) == ffd95f4724211f4be013a17cad0d77c7914cd1cbc0f5200aa57f3bbc1d3de00c
找到的XXXX是: DLrg
[+] Give me the G_x
> 22565311448306005908
[+] Give me the G_y
> 1397916078140553774
[+] Share_G : (22565311448306005908,1397916078140553774)
[+] Bob_PubKey : (10333552860092078375,11655164729158644779)
[+] Give me the Alice_PubKey.x
> 9250488053827849960
[+] Give me the Alice_PubKey.y
> 15122360881016255980
[+] Alice_PubKey : (9250488053827849960,15122360881016255980)
[+] Give me the ciphertext
> c06e8014b5e95178c688f177d0c28194a742fb67c042a34a9c08ece27e2670780ed81630a3cecaf3df343eeea32d2116
[+] Bob get the flag : 0xGame{71234da9-baf8-406e-9cc7-d08ceedea945}

ECC-baby

用sage计算

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from sage.all import *

p = 4559252311
a = 1750153947
b = 3464736227
E = EllipticCurve(GF(p),[a,b])
G = E(2909007728, 1842489211)
P = E(1923527223, 2181389961)
G_= E(1349689070,1217312018)
C = E(662346568,2640798701)

n = E.order()

factors = factor(n)
print(factors) # 2^2 * 1139828071

result = []
factors = [4, 1139828071] #
for f1 in factors:
t = n //f1
res = discrete_log(t*P,t*G,operation='+')
result += [res]

print(result) # [3, 530591416]
k = crt(result,factors)
print(k) # 1670419487

k = 1670419487
M = C - G_ * k
print(M) # (944662661 : 635214115 : 1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from Crypto.Cipher import AES
from hashlib import md5


def MD5(m):
return md5(str(m).encode()).digest()


k = 1670419487
M_x = 944662661 # M = C - G_ * k = (944662661 : 635214115 : 1)
Cipher = AES.new(MD5(M_x), AES.MODE_ECB)
enc = "29bb47e013bd91760b9750f90630d8ef82130596d56121dc101c631dd5d88201a41eb3baa5aa958a6cd082298fc18418"
enc = bytes.fromhex(enc)
flag = Cipher.decrypt(enc)
print(flag.decode()) # 0xGame{0b0e28c2-b36d-d745-c0be-fcf0986f316a}

EzLogin-I

使用CBC字节翻转攻击:规定密文为C(已知),解密后的密文为B(未知),原来的明文为P(已知),他们满足 IVB=PIV \oplus B=P,现在可以篡改IV,IV=PIVPIV'=P \oplus IV \oplus P' 使得 IVB=PIVPB=PIV'\oplus B =P \oplus IV \oplus P'\oplus B=P',这样就能篡改cookie。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/local/bin/python
from base64 import b64encode, b64decode
from datetime import datetime
import json


def pad(data: bytes):
l = 16 - len(data) % 16 # PCKS7 padding length
return data + bytes([l] * l)


def main():
data = input("[+] Enter your cookie:\n>").strip()
data = b64decode(data.encode())
IV, C = data[:16], data[16:] # 已知密文
# {"username": "A
# mqP7rMoHp/NewIwl AOhBvwHRXLTEl9MYRwo4sDjhYSTIB/xRv835m+T4Jc19BYU5SgZRvtronSEn4BA+rYCPRA==

now = datetime.now()
t = int(datetime.timestamp(now))
for i in range(5, 15):
time = t - i
cookie = {}
cookie["username"] = "admin"
cookie["time"] = time
P_ = pad(json.dumps(cookie).encode()) # 目标明文

cookie = {}
cookie["username"] = "Admin"
cookie["time"] = time
P = pad(json.dumps(cookie).encode()) # 已知明文
print(forge(P, P_, C, IV))


def forge(P, P_, C, IV):
P = bytearray(P)
P_ = bytearray(P_)
IV = bytearray(IV)
IV[14] = P_[14] ^ IV[14] ^ P[14]
IV = bytes(IV)
return b64encode(IV + C).decode()


if __name__ == "__main__":
main()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
┌──(root㉿Spreng)-[~]
└─# nc 118.195.138.159 10005
+--------------+
| [R] Regist |
| [L] Login |
| [F] Getflag |
+--------------+

[+] Tell me your choice:
>R
[+] username:
>Admin
[+] cookie : O1yW3bpyePzOQVVAlHCrL7hO3jLlKV/BxQa6j5F36V8X1r6Ugng7FvRinuy2km8xGGanhUQLLm/2/AW6shCFjg==
[+] Tell me your choice:
>L
[+] cookie:
>O1yW3bpyePzOQVVAlHCLL7hO3jLlKV/BxQa6j5F36V8X1r6Ugng7FvRinuy2km8xGGanhUQLLm/2/AW6shCFjg==
[+] Here is flag1 : b'0xGame{ad34acff-a813-4bc3-a44a-c270edf244b7}'
[+] Tell me your choice:
>
1
2
3
[+] Enter your cookie:
> O1yW3bpyePzOQVVAlHCrL7hO3jLlKV/BxQa6j5F36V8X1r6Ugng7FvRinuy2km8xGGanhUQLLm/2/AW6shCFjg==
O1yW3bpyePzOQVVAlHCLL7hO3jLlKV/BxQa6j5F36V8X1r6Ugng7FvRinuy2km8xGGanhUQLLm/2/AW6shCFjg==

EzLogin-II

PaddingOracleAttack:与CBC翻转攻击类似,依然是IVB=PIV \oplus B=P,只不过这次的P是未知的,由于unpad过程有报错提示,可以据此判断P的情况。对B的对应字节进行枚举,例如枚举最后一个字节,当P=0x000x01P'=0x00或0x01时,提示JSON Wrong,否则提示Unkown Wrong,一般希望得到的是P=0x01P'=0x01,这样就可以反推出B和P。枚举其他字节时,利用前面字节确定的B就可以定向控制P。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/local/bin/python
from base64 import b64encode, b64decode
from Crypto.Cipher import AES
from datetime import datetime
from os import urandom
import json
from time import sleep
from pwn import *


KEY = urandom(16)
flag2 = "0xGame{c0ngr4t1ng_w1th_c0d3_4r3_1n_th3_w0rld}" # 32 <= length < 48
ip = "118.195.138.159"
port = 10005
io = remote(ip, port)


def pad(data: bytes):
l = 16 - len(data) % 16 # PCKS7 padding length
return data + bytes([l] * l)


def unpad(data: bytes):
for i in range(1, data[-1] + 1):
if data[-1] != data[-i]:
print("Unpad error")
return data[: -data[-1]]


def encrypt(data):
IV = urandom(16)
ENC = AES.new(KEY, AES.MODE_CBC, IV)
result = ENC.encrypt(pad(data.encode()))
return b64encode(IV + result).decode()


def decrypt(data):
data = b64decode(data)
IV, C = data[:16], data[16:]
DEC = AES.new(KEY, AES.MODE_CBC, IV)
result = DEC.decrypt(C)
return unpad(result).decode()


def login(data):
data = data.encode()
data = b64decode(data)
IV, C = data[:16], data[16:]
DEC = AES.new(KEY, AES.MODE_CBC, IV)
data = DEC.decrypt(C)
if data[-1] > 16:
return False
for i in range(1, data[-1] + 1):
if data[-1] != data[-i]:
return False
return True


def main():
# data = input("[+] Enter your cookie:\n>").strip()

# 输出F
io.sendlineafter(b"Tell me your choice:\n>", b"F")
# 接收flag2
data = io.recvuntil(b"\n", drop=True).decode().strip()
data = data.split("Here is flag2 :")[1].strip()
print(f"[+] Here is flag2: {data}")
data = b64decode(data.encode())
# 输出L
io.sendlineafter(b"Tell me your choice:\n>", b"L")

P = bytearray(0)
for i in range(1, 3):
P += explode(data, i)
print(P)
P = bytes(P).decode()
print(P) # 0xGame{6e02937e-634d-4f6f-8ef6-e5f387006cde}


def explode(data: bytes, block_num: int) -> bytearray:
P = bytearray(16) # 记录明文
B = bytearray(16) # 记录初步解密的块
for i in range(1, 17):
print(" ", end="\r")
print(round(100 * (i - 1 + block_num * 16) / 48, 2), "%", end="\r")
for byte in range(256):
IV_ = bytearray(16)
if block_num == 0:
IV = data[:16]
for j in range(16):
IV_[j] = IV[j]
for j in range(1, i):
IV_[-j] = B[-j] ^ i
IV_[-i] = byte
IV_ = bytes(IV_)
data_ = IV_ + data[16:32]
elif block_num == 1:
IV = data[16:32]
for j in range(16):
IV_[j] = IV[j]
for j in range(1, i):
IV_[-j] = B[-j] ^ i
IV_[-i] = byte
IV_ = bytes(IV_)
data_ = IV_ + data[32:48]
elif block_num == 2:
IV = data[32:48]
for j in range(16):
IV_[j] = IV[j]
for j in range(1, i):
IV_[-j] = B[-j] ^ i
IV_[-i] = byte
IV_ = bytes(IV_)
data_ = IV_ + data[48:64]
else:
return None
if put(b64encode(data_)):
B[-i] = IV_[-i] ^ i
P[-i] = IV[-i] ^ B[-i]
break
return P


def put(try_data):
# 输出try_data
io.sendlineafter(b"cookie:\n>", try_data)
# 接受信息
response = io.recvline()
if b"Unkown Wrong" in response:
return False
else:
print(response)
return True

# if login(try_data):
# return True
# else:
# return False


if __name__ == "__main__":
main()

LLL-I

先用LLL还原,正交矩阵会被约掉

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
mt = matrix(ZZ, 0, 4)
mt = mt.stack(
vector(
[
1849784703482951012865152264025674575,
2664848085955925754350117767673627932,
2099783527396520151610274180590854166,
1020558595577301617108111920545804527,
]
)
)
mt = mt.stack(
vector(
[
1207449566811121614020334020195802372,
1954621976999112878661150903673543232,
1326050406731534201574943690688237338,
1361813208094227445768111591959011963,
]
)
)
mt = mt.stack(
vector(
[
888810907577479776819993141014777624,
1216302736807928240875874427765340645,
1027359437421599069599327712873719567,
238961447144792739830554790892164336,
]
)
)
mt = mt.stack(
vector(
[
60622164517940943037274386912282,
82958508138755168576836012717468,
70072118066826856564329627650828,
16296740862142507745322242235326,
]
)
)
print(mt.LLL()[0])

还原flag:

1
2
3
4
5
6
7
8
9
10
11
12
# 假设 Length 是 8
Length = 8

# 还原 flag
flag = b""
for noise in Noise[0]:
flag += long_to_bytes(noise)

# 将字节字符串转换为 ASCII 字符串
flag = flag.decode("latin-1") # 或者使用其他适当的编码

print(flag) # 0xGame{04679c42-2bc1-42b2-b836-1b0ca542f36b}

理解这道题为什么用 LLL 可以直接得出答案需要理解两个点:

  1. 在 flag 信息较小的情况下,M 极大概率能用 LLL 还原出 flag。
  2. M 和 C*M 表示的格是相同的,对 M 和 C*M 进行格基规约是等效的。

第一点,举一个简单的例子,对于二维的格基(10,7)和(21,114514)进行格基规约,一定会保留(10,7),但(21,114514)一定会被约简。这道题也是,数量级小的 flag 信息和数量级大的 noise 同时格基规约,flag 信息极大概率会保留,除非两个数量级大的 noise 相减能得到比 flag 更小的格基但这几乎是不可能。

第二点,这个性质与三角、正交矩阵没关系,而是因为 C 行列式等于 1,像这样行列式等于 1 或-1 的矩阵叫单模矩阵。C*M 相当于一个对 M 的线性变换,这样的格基构成的格一定在 M 构成的格中。而格的行列式是个定量,对于同一个格的格基行列式总是相等的,由于 C*M 行列式没有变化,显然格也是不变的。

LLL-II

先推公式:

\begin{align} C_{i} = aC_{i-1}+b \mod m \\ km - aC_{i-1}+C_{i} = b \mod m \\ \end{align}

构造矩阵:

[k1k2k3k4a1][m000000m000000m000000m00C0C1C2C3K/m0C1C2C3C40K]=[b1b2b3b4aK/mK]\begin{bmatrix} k_1 & k_2 & k_3 & k_4 & -a & 1 \\ \end{bmatrix} \begin{bmatrix} m & 0 & 0 & 0 & 0 & 0 \\ 0 & m & 0 & 0 & 0 & 0 \\ 0 & 0 & m & 0 & 0 & 0 \\ 0 & 0 & 0 & m & 0 & 0 \\ C_0 & C_1 & C_2 & C_3 & -K/m & 0 \\ C_1 & C_2 & C_3 & C_4 & 0 & K \\ \end{bmatrix}= \begin{bmatrix} b_1 & b_2 & b_3 & b_4 & aK/m & K \\ \end{bmatrix}

对第二个矩阵进行LLL即可

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Cs = [ 11804527453299586684489593808016317337345238230165321056832279785591503368758306671170625597063579251464905729051049524014502008954170088604924368057540940, 4930922884306486570759661288602557428608315558804950537470100263019228888817481617065454705843164809506859574053884206133344549895853064735361336486560981, 5380263856446165449531647111260010594620416730932539097782399557603420658350407080366132490174060420530708293564252852668431923560882648691392446521188465, 10746696290782998433216934286282230556131938525513632178308443345441147075710552571129957873399395862207656161609046567289600084193860244770966610161184627, 2195032957511830992558961021566904850278796737316238566513837995297394215638259916944087623923636789312134734949452839561765171446217520081402769962517110
]
m = 12813864523019740432913161815051292412705285817864701047922722497269479288096574264414061282833203433542813637861620032851255308640850882149603687035724753

# A = Matrix([k1, k2, k3, k4, -a, 1])
# B = Matrix([b1, b2, b3, b4, a*K/m, K])
K = 2**128
M = Matrix([[m, 0, 0, 0, 0, 0],
[0, m, 0, 0, 0, 0],
[0, 0, m, 0, 0, 0],
[0, 0, 0, m, 0, 0],
[Cs[0], Cs[1], Cs[2], Cs[3], -K/m, 0],
[Cs[1], Cs[2], Cs[3], Cs[4], 0, K]])
L = M.LLL()
print(L[1,-2] / K * m % m)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from Crypto.Util.number import getPrime, inverse
from hashlib import md5


def MD5(m):
return md5(str(m).encode()).hexdigest()


m = 12813864523019740432913161815051292412705285817864701047922722497269479288096574264414061282833203433542813637861620032851255308640850882149603687035724753
cur = 11804527453299586684489593808016317337345238230165321056832279785591503368758306671170625597063579251464905729051049524014502008954170088604924368057540940
a = 88228655655643892993781402176287725906648157132284850532547692363725282117565848131827912110567885672978666024219540979856
a = 105335058376849464581926358411480063090049833236632732289586293246093519574939
print(a.bit_length()) # 256
seed = (cur * inverse(a, m)) % m
print(seed.bit_length()) # 510
print("0xGame{" + MD5(seed) + "}") # 0xGame{2db84757dd4197f9b9441be25f35bfd5}

LLL-III

多元Coppersmith解法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import itertools
def small_roots(f, bounds, m=1, d=None):
if not d:
d = f.degree()
R = f.base_ring()
N = R.cardinality()
f /= f.coefficients().pop(0)
f = f.change_ring(ZZ)
G = Sequence([], f.parent())
for i in range(m+1):
base = N^(m-i) * f^i
for shifts in itertools.product(range(d), repeat=f.nvariables()):
g = base * prod(map(power, f.variables(), shifts))
G.append(g)
B, monomials = G.coefficient_matrix()
monomials = vector(monomials)
factors = [monomial(*bounds) for monomial in monomials]
for i, factor in enumerate(factors):
B.rescale_col(i, factor)
B = B.dense_matrix().LLL()
B = B.change_ring(QQ)
for i, factor in enumerate(factors):
B.rescale_col(i, 1/factor)
H = Sequence([], f.parent().change_ring(QQ))
for h in filter(None, B*monomials):
H.append(h)
I = H.ideal()
if I.dimension() == -1:
H.pop()
elif I.dimension() == 0:
roots = []
for root in I.variety(ring=ZZ):
root = tuple(R(root[var]) for var in f.variables())
roots.append(root)
return roots
return []
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# sage

n = 181261975027495237253637490821967974838107429001673555664278471721008386281743
a = 80470362380817459255864867107210711412685230469402969278321951982944620399953
b = 108319759370236783814626433000766721111334570586873607708322790512240104190351
output = [
2466192191260213775762623965067957944241015,
1889892785439654571742121335995798632991977,
1996504406563642240453971359031130059982231,
1368301121255830077201589128570528735229741,
3999315855035985269059282518365581428161659,
3490328920889554119780944952082309497051942,
2702734706305439681672702336041879391921064,
2326204581109089646336478471073693577206507,
3428994964289708222751294105726231092393919,
1323508022833004639996954642684521266184999,
2208533770063829989401955757064784165178629,
1477750588164311737782430929424416735436445,
973459098712495505430270020597437829126313,
1849038140302190287389664531813595944725351,
1172797063262026799163573955315738964605214,
1754102136634863587048191504998276360927339,
113488301052880487370840486361933702579704,
2862768938858887304461616362462448055940670,
3625957906056311712594439963134739423933712,
3922085695888226389856345959634471608310638,
]

#
PR.<x,y> = PolynomialRing(Zmod(n))
f = ((output[0]<<115)+ x) * a + b - ((output[1]<<115) + y)
roots = small_roots(f,(2^115, 2^115), m=4, d=4)
s1 = (output[0]<<115) + roots[0][0]
m = (s1 - b) * inverse_mod(a, n) % n
print(m) # 101639613050544872292192629515273562035022699788445344858455157668840828973361

1
2
3
4
5
6
7
8
9
10

from hashlib import md5


def MD5(m):
return md5(str(m).encode()).hexdigest()


seed = 101639613050544872292192629515273562035022699788445344858455157668840828973361
print("0xGame{" + MD5(seed) + "}") # 0xGame{459049e068d93f6d70f1ea0da705264a}

这题当时用的多元 coppersmith 做的:多元 copper 脚本,h+p=a*seed+b,求解 p, seed 正好只有一组解。

构造格的过程如下,p 的数量级是 2^115^,这里的 K 应该设为 2^115^适宜。

IMG_20250223_141359

Reverse

BabyASM

先化简原文

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
data = [20, 92, 43, 69, 81, 73, 95, 23, 72, 22, 24, 69, 25, 27, 22, 17, 23, 29, 24, 73, 17, 24, 85, 27, 112, 76, 15, 92, 24, 1, 73, 84, 13, 81, 12, 0, 84, 73, 82, 8, 82, 81, 76, 125]

def printFLAG():
printf("%s\n", data)

main:
index = 0
goto L3
L4:
eax = data[index]
eax += 28
data[index] = eax
index += 1

L3:
if index<= 21 goto L4

L5:
edx = data[index]
eax = data[index-22]
edx ^= eax
data[index-22] = edx
add index, 1
if index <= 42 goto L5
printFLAG

转为python代码就是:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
data = [20, 92, 43, 69, 81, 73, 95, 23, 72, 22, 24, 69, 25, 27, 22, 17, 23, 29, 24, 73, 17, 24, 85, 27, 112, 76, 15, 92, 24, 1, 73, 84, 13, 81, 12, 0, 84, 73, 82, 8, 82, 81, 76, 125]


def printf(format, *args):
print(format % args) # 简化的printf实现,实际printf更复杂


def printFLAG(flag_bytes):
printf("%s", bytes(flag_bytes))


def main():
# 第一个循环:将每个字节增加28
for i in range(22):
data[i] += 28

printFLAG(data) # 打印处理后的data数组

# 第二个循环:对data数组进行异或操作
for i in range(22, 43):
data[i] ^= data[i - 22]

printFLAG(data) # 打印处理后的data数组
# 0xGame{3d24a572-394e-aec7-b9c2-f9097fda1f4L}


if __name__ == "__main__":
main()

LittlePuzzle

在线反编译jar,转python

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
def exit():
print("解谜失败")
exit(1)


def check(board, x, y):
t = board[x][y]
x_ = x - x % 3
y_ = y - y % 3

for i in range(9):
if i != x and i != y and (t == board[x][i] or t == board[i][y]):
return False

for i in range(3):
for j in range(3):
if x_ + i != x and y_ + j != y and t == board[x_ + i][y_ + j]:
return False

return True


def flag(answer):
s = []

for i in range(0, len(answer), 6):
var3 = int(answer[i : i + 6])
s.append(hex(var3)[2:])

return "".join(s)


def main():
board = [
[5, 7, 0, 9, 4, 0, 8, 0, 0],
[0, 0, 8, 0, 3, 0, 0, 0, 5],
[0, 1, 0, 2, 0, 0, 0, 3, 7],
[0, 0, 9, 7, 2, 0, 0, 0, 0],
[7, 3, 4, 0, 0, 8, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 7, 5, 1],
[3, 0, 0, 0, 1, 4, 2, 0, 0],
[0, 6, 0, 0, 0, 2, 0, 4, 0],
[0, 2, 7, 0, 0, 9, 5, 0, 0],
]

# board = [
# [5, 7, 3| 9, 4, 1| 8, 6, 2],
# 0 0 0 0
# [2, 4, 8| 6, 3, 7| 1, 9, 5],
# 0 0 0 0 0 0
# [9, 1, 6| 2, 8, 5| 4, 3, 7],
# 0 0 0 0 0
# [1, 5, 9| 7, 2, 6| 3, 8, 4],
# 0 0 0 0 0 0
# [7, 3, 4| 1, 5, 8| 6, 2, 9],
# 0 0 0 0 0
# [6, 8, 2| 4, 9, 3| 7, 5, 1],
# 0 0 0 0 0 0
# [3, 9, 5| 8, 1, 4| 2, 7, 6],
# 0 0 0 0 0
# [8, 6, 1| 5, 7, 2| 9, 4, 3],
# 0 0 0 0 0 0
# [4, 2, 7| 3, 6, 9| 5, 1, 8]
# 0 0 0 0 0
# 3162 246719 96854 156384 15629 682493 95876 815793 43618
# 4+6+5+6+5+6+5+6+5= 48
# ]

print("请输入你的解谜结果:")
answer = "316224671996854156384156296824939587681579343618"
if len(answer) != 48:
exit()

var3 = 0

for i in range(9):
for j in range(9):
if board[i][j] == 0:
var6 = int(answer[var3])
if 1 <= var6 <= 9: # ASCII调整,'0'字符的ASCII码是48,所以需要减去48
board[i][j] = var6
var3 += 1
else:
exit()

for i in range(9):
for j in range(9):
if not check(board, i, j):
exit()

print(f"0xGame{{{flag(answer)}}}") # 0xGame{4d340a40fcd088c5dc9c48778e5643a666b53e42}


if __name__ == "__main__":
main()

# board = [
# [5, 7, 3, 9, 4, 1, 8, 6, 2],
# [2, 4, 8, 6, 3, 7, 1, 9, 5],
# [9, 1, 6, 2, 8, 5, 4, 3, 7],
# [1, 5, 9, 7, 2, 6, 3, 8, 4],
# [7, 3, 4, 1, 5, 8, 6, 2, 9],
# [6, 8, 2, 4, 9, 3, 7, 5, 1],
# [3, 9, 5, 8, 1, 4, 2, 7, 6],
# [8, 6, 1, 5, 7, 2, 9, 4, 3],
# [4, 2, 7, 3, 6, 9, 5, 1, 8],
# ]
# for i in range(9):
# for j in range(9):
# if not check(board, i, j):
# print("解谜失败")

只要把数独给解了,把填入的数组合在一起运行一下就出来了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import java.util.Scanner;

public class Puzzle {
static int[][] board = new int[][] {
{ 5, 7, 0, 9, 4, 0, 8, 0, 0 },
{ 0, 0, 8, 0, 3, 0, 0, 0, 5 },
{ 0, 1, 0, 2, 0, 0, 0, 3, 7 },
{ 0, 0, 9, 7, 2, 0, 0, 0, 0 },
{ 7, 3, 4, 0, 0, 8, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 7, 5, 1 },
{ 3, 0, 0, 0, 1, 4, 2, 0, 0 },
{ 0, 6, 0, 0, 0, 2, 0, 4, 0 },
{ 0, 2, 7, 0, 0, 9, 5, 0, 0 } };

public static void exit() {
System.out.println("解谜失败");
System.exit(1);
}

public static boolean check(int x, int y) {
int t = board[x][y];
int x_ = x - x % 3;
int y_ = y - y % 3;

int i;
for (i = 0; i < 9; ++i) {
if (i != x && i != y && (t == board[x][i] || t == board[i][y])) {
return false;
}
}

for (i = 0; i < 3; ++i) {
for (int var6 = 0; var6 < 3; ++var6) {
if (x_ + i != x && y_ + var6 != y && t == board[x_ + i][y_ + var6]) {
return false;
}
}
}

return true;
}

static String flag(String answer) {
StringBuilder s = new StringBuilder();

for (int i = 0; i < answer.length(); i += 6) {
int var3 = Integer.parseInt(answer.substring(i, i + 6));
s.append(Integer.toHexString(var3));
}

return s.toString();
}

public static void main(String[] var0) {
// System.out.println("请输入你的解谜结果:");
// Scanner scanner = new Scanner(System.in);
// String answer = scanner.nextLine();
// scanner.close();
String answer = "316224671996854156384156296824939587681579343618";
if (answer.length() != 48) {
exit();
}

int var3 = 0;

int i;
int j;
for (i = 0; i < 9; ++i) {
for (j = 0; j < 9; ++j) {
if (board[i][j] == 0) {
int var6 = answer.charAt(var3) - 48;
if (var6 > 0 && var6 <= 9) {
board[i][j] = var6;
++var3;
} else {
exit();
}
}
}
}

for (i = 0; i < 9; ++i) {
for (j = 0; j < 9; ++j) {
if (!check(i, j)) {
exit();
}
}
}

System.out.println(String.format("0xGame{%s}", flag(answer)));
}
}

Tea

由于C和python的位运算符不太一样,而且程序本来就是C写的,脚本就用C了

tea的解密只要把程序倒过来抄一遍就可以了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include <stdio.h>
#include <stdint.h>

void preProcess(char *a1, int len)
{
char *i = &a1[len - 1];
char v5;

while (1)
{
if (a1 >= i)
break;
v5 = *a1;
*a1 = *i;
*i = v5;
++a1;
--i;
}
}

void tea_dec(uint32_t *data, uint32_t *k)
{
uint32_t v3 = data[0];
uint32_t v4 = data[1];
int v5 = -1640531527 * 32;
for (int i = 0; i < 32; ++i)
{
v4 -= (v3 + v5) ^ ((v3 >> 5) + k[3]) ^ (k[2] + 16 * v3);
v3 -= (v4 + v5) ^ ((v4 >> 5) + k[1]) ^ (*k + 16 * v4);
v5 += 1640531527;
}
data[0] = v3;
data[1] = v4;
}

int main()
{
char data[] = {
0xC9, 0xB6, 0x5C, 0xCE, 0xF8, 0xEE, 0x8E, 0xA2, 0x33, 0x36,
0x34, 0x63, 0x37, 0x32, 0x36, 0x64, 0x38, 0x37, 0x65, 0x33,
0x62, 0x33, 0x63, 0x64, 0x36, 0x39, 0x64, 0x34, 0x64, 0x30,
0x62, 0x38, 0x2A, 0x7A, 0x7C, 0x3B, 0x85, 0x33, 0x6D, 0xD3};

char k[] = {
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00};

preProcess(&data, 40);
for (int i = 0; i < 5; i++)
{
tea_dec((uint32_t *)(__int64)&data[32 * i], (uint32_t *)(__int64)&k);
}
printf("%s\n", data); // 0xGame{e8b0d4d96dc3b3e78d627c463c9953a1}

return 0;
}

The Matrix

这道题最开始叫Mad Matrix

这道题读程比较麻烦,hello就是给矩阵赋值的,前几位保存行数列数,代码中只用到了3阶矩阵

matmul就是矩阵的乘法

加密过程就是用输入做出7个矩阵,其中存在数据的复用。然后再轮流左乘k对应的4个矩阵,与data对比。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>

// hello: 复制a1到a2
// a1: 矩阵数值 4*9
// a2:4+4+4*9=44, 行+列+数据
unsigned __int8 *hello(__int64 a1, unsigned __int8 *a2)
{
for (int i = 0; i < 9; ++i)
{
*(uint32_t *)(*((uint64_t *)a2 + 1) + 4 * i) = *(uint32_t *)(a1 + 4 * i);
}
return a2;
}

// 生成矩阵input->memory
// memory: 存储
// input: 输入的44位字符串
void Morpheus(__int64 memory, __int64 input)
{
__int64 v5; // [rsp+0h] [rbp-80h]
__int32 v6[64]; // 4 * 64
unsigned char *v7; // [rsp+120h] [rbp+A0h]
int j; // [rsp+128h] [rbp+A8h]
int i; // [rsp+12Ch] [rbp+ACh]

memset(&v5 + 4, 0, 0x100u); // 初始化v5

// 将input的内容复制到v6
// 44*1->44*4=176 用0填充
for (i = 0; *(unsigned char *)(input + i); ++i)
v6[i] = *(char *)(input + i);

for (j = 0; j < 7; ++j)
{
// 清空v7
v7 = malloc(0x10u);
*v7 = 3;
v7[1] = 3;
*((int64_t *)v7 + 1) = malloc(0x24u);

// 44*4 -> 7* 4*6
if (&v6[6 * j])
// v7 = 4+4+ 36 = 32
//
hello((__int64)&v6[6 * j], v7);
// memery = 7* 8*8= 448
*(int64_t *)(memory + 8 * j) = v7;
}
}
// 计算行列式值
__int64 Neo(unsigned __int8 *a1)
{
FILE *v1; // rax
__int64 result; // rax
FILE *v3; // rax
int v4; // ebx
void *Memory; // [rsp+28h] [rbp-58h]
uint32_t *v6; // [rsp+30h] [rbp-50h]
unsigned __int8 y; // [rsp+38h] [rbp-48h]
unsigned __int8 x; // [rsp+39h] [rbp-47h]
unsigned __int8 i; // [rsp+3Ah] [rbp-46h]
char v10; // [rsp+3Bh] [rbp-45h]
unsigned int v11; // [rsp+3Ch] [rbp-44h]
char *v12; // [rsp+60h] [rbp-20h]

v12 = (char *)a1;
x = a1[0];
y = a1[1];

if (x != y)
{
v1 = (FILE *)__acrt_iob_func(2);
fwrite("ERROR:Det Matrix input is not sqare matrix!", 1u, 0x2Bu, v1);
return 0;
}

v6 = (uint32_t *)*((uint64_t *)a1 + 1);
// 行列式阶数
switch (x)
{
case 0:
v3 = (FILE *)__acrt_iob_func(2);
fwrite("ERROR:Det Matrix input is zero!", 1u, 0x1Fu, v3);
return 0;
case 1:

return **((unsigned int **)a1 + 1);

case 2:
return (unsigned int)(v6[3] * *v6 - v6[1] * v6[2]);

default:
v11 = 0;
v10 = 1;
Memory = malloc(0x10u);
*(unsigned char *)Memory = x - 1;
*((unsigned char *)Memory + 1) = y - 1;
*((uint64_t *)Memory + 1) = malloc(4 * (x - 1) * (__int64)(y - 1));
for (i = 0; i < x; ++i)
{
leftMatrix(0, i, v12, Memory);
v4 = v6[i] * v10;
v11 += v4 * (unsigned __int64)Neo(Memory);
v10 = -v10;
}
free(*((void **)Memory + 1));
free(Memory);
return v11;
}
}
// 乘法 a1*a2->a3
__int64 guess(unsigned __int8 *a1, __int64 a2, __int64 a3)
{
unsigned __int8 v4; // [rsp+Eh] [rbp-12h]
unsigned __int8 v5; // [rsp+Fh] [rbp-11h]
unsigned __int8 v6; // [rsp+10h] [rbp-10h]
unsigned __int8 k; // [rsp+11h] [rbp-Fh]
unsigned __int8 j; // [rsp+12h] [rbp-Eh]
unsigned __int8 i; // [rsp+13h] [rbp-Dh]
int v10; // [rsp+14h] [rbp-Ch]
int v11; // [rsp+18h] [rbp-8h]
int v12; // [rsp+1Ch] [rbp-4h]

// a3 有前缀
if (!a3)
return 0;
if ((unsigned __int8 *)a3 == a1 || a3 == a2)
return 0;
// a1行数=a2列数
if (a1[1] != *(unsigned char *)a2)
return 0;
v12 = 0;
v11 = 0;
v6 = *a1;
v5 = a1[1];
v4 = *(unsigned char *)(a2 + 1);
// 穷举所有可能的乘法
for (i = 0; i < a1[0]; ++i)
{
for (j = 0; j < v4; ++j)
{
//a3[v12] = a1[i] * a2[j]
*(uint32_t *)(*(uint64_t *)(a3 + 8) + 4 * v12) = 0;
v10 = 0;
for (k = 0; k < v5; ++k)
{
*(uint32_t *)(*(uint64_t *)(a3 + 8) + 4 * v12) +=
*(uint32_t *)(*(uint64_t *)(a2 + 8) + 4 * (v10 + j)) *
*(uint32_t *)(*((uint64_t *)a1 + 1) + 4 * (v11 + k));
v10 += v4;
}
++v12;
}
v11 += v5;
}
return a3;
}
// 比较矩阵
int byebye(unsigned __int8 *a1, const void *a2)
{
int result; // eax

if (*a1 * a1[1] == 9)
result = memcmp(*((const void **)a1 + 1), a2, 36);
else
result = -1;
return result;
}

int __cdecl main(int argc, const char **argv, const char **envp)
{
char v4; // [rsp+20h] [rbp-60h]
char v5; // [rsp+50h] [rbp-30h]
char v6; // [rsp+51h] [rbp-2Fh]
char *v7; // [rsp+58h] [rbp-28h]

char v8; // [rsp+60h] [rbp-20h]
char v9; // [rsp+90h] [rbp+10h]
char v10; // [rsp+91h] [rbp+11h]
char *v11; // [rsp+98h] [rbp+18h]

char v12; // [rsp+A0h] [rbp+20h]
char v13; // [rsp+D0h] [rbp+50h]
char v14; // [rsp+D1h] [rbp+51h]
char *v15; // [rsp+D8h] [rbp+58h]

char v16; // [rsp+E0h] [rbp+60h]
char v17; // [rsp+110h] [rbp+90h]
char v18; // [rsp+111h] [rbp+91h]
char *v19; // [rsp+118h] [rbp+98h]

char *v20; // [rsp+120h] [rbp+A0h]
char *v21; // [rsp+128h] [rbp+A8h]
char *v22; // [rsp+130h] [rbp+B0h]
char *v23; // [rsp+138h] [rbp+B8h]

char Str; // [rsp+2C0h] [rbp+240h]
unsigned char *v28; // [rsp+300h] [rbp+280h]
unsigned int lenStr; // [rsp+308h] [rbp+288h]
int j; // [rsp+310h] [rbp+290h]
int k; // [rsp+314h] [rbp+294h]
int i; // [rsp+318h] [rbp+298h]
int v33; // [rsp+31Ch] [rbp+29Ch]

printf("Welcome to the test of Mad Matrix.\nNow you are allowed to input flag:");
memset(&Str, 0, 0x240u);
scanf("%64s", &Str);
lenStr = strlen(&Str);

// KeyMatrix_Array 1000 3000 1000 0000 2000 1000 1000 2000 0000
// unk_404044 1000 2000 2000 3000 5000 6000 0000 2000 1000
// unk_404068 0000 4000 3000 1000 2000 1000 2000 3000 1000
// unk_40408C 1000 2000 3000 3000 5000 6000 1000 4000 A000
// unk_4040C0 E8100C0100 2000 3000 4000 5000 2000 3000 4000
char *unk_404044 = {1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0};
char *unk_40408C = {1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0xA, 0, 0, 0};
char *KeyMatrix_Array = {1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0};
char *unk_404068 = {0, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0};

unsigned char unk_4040C0[] = {
0xE8, 0x1, 0x0, 0x0, 0xC0, 0x1, 0x0, 0x0,
0x81, 0x1, 0x0, 0x0, 0x57, 0x5, 0x0, 0x0,
0xD3, 0x4, 0x0, 0x0, 0x1E, 0x4, 0x0, 0x0,
0x3D, 0x1, 0x0, 0x0, 0x11, 0x1, 0x0, 0x0,
0x2, 0x1, 0x0, 0x0, 0x6C, 0x2, 0x0, 0x0,
0x40, 0x1, 0x0, 0x0, 0x45, 0x1, 0x0, 0x0,
0xB7, 0x5, 0x0, 0x0, 0xEC, 0x2, 0x0, 0x0,
0xF3, 0x2, 0x0, 0x0, 0xE9, 0x5, 0x0, 0x0,
0x1D, 0x3, 0x0, 0x0, 0x36, 0x3, 0x0, 0x0,
0x4D, 0x1, 0x0, 0x0, 0x0A, 0x1, 0x0, 0x0,
0x92, 0x1, 0x0, 0x0, 0xD, 0x0, 0x0, 0x0,
0x9F, 0x0, 0x0, 0x0, 0xF5, 0x0, 0x0, 0x0,
0xBD, 0x0, 0x0, 0x0, 0xA1, 0x0, 0x0, 0x0,
0x1, 0x1, 0x0, 0x0, 0x62, 0x1, 0x0, 0x0,
0x47, 0x1, 0x0, 0x0, 0x23, 0x2, 0x0, 0x0,
0xFB, 0x0, 0x0, 0x0, 0xC0, 0x0, 0x0, 0x0,
0x26, 0x1, 0x0, 0x0, 0x91, 0x1, 0x0, 0x0,
0x23, 0x1, 0x0, 0x0, 0xB7, 0x1, 0x0, 0x0,
0xF0, 0x0, 0x0, 0x0, 0xFD, 0x0, 0x0, 0x0,
0x0D, 0x1, 0x0, 0x0, 0x9E, 0x2, 0x0, 0x0,
0xC0, 0x2, 0x0, 0x0, 0xF1, 0x2, 0x0, 0x0,
0x91, 0x0, 0x0, 0x0, 0x9F, 0x0, 0x0, 0x0,
0xA4, 0x0, 0x0, 0x0, 0x29, 0x2, 0x0, 0x0,
0x3B, 0x1, 0x0, 0x0, 0x2E, 0x1, 0x0, 0x0,
0xE4, 0x4, 0x0, 0x0, 0xD8, 0x2, 0x0, 0x0,
0xC7, 0x2, 0x0, 0x0, 0xBD, 0x5, 0x0, 0x0,
0x25, 0x3, 0x0, 0x0, 0xE4, 0x2, 0x0, 0x0,
0xC7, 0x1, 0x0, 0x0, 0x51, 0x1, 0x0, 0x0,
0xD5, 0x0, 0x0, 0x0, 0xFE, 0x0, 0x0, 0x0,
0xE5, 0x0, 0x0, 0x0, 0x6E, 0x0, 0x0, 0x0,
0x2C, 0x1, 0x0, 0x0, 0xA0, 0x0, 0x0, 0x0,
0x9E, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};

v20 = 0;
v13 = 3;
v14 = 3;
v15 = &v12;
hello((__int64)&unk_404044, (unsigned __int8 *)&v13); // 9
v20 = &v13;

v21 = 0;
v5 = 3;
v6 = 3;
v7 = &v4;
hello((__int64)&unk_40408C, (unsigned __int8 *)&v5); // 9
v21 = &v5;

v22 = 0;
v17 = 3;
v18 = 3;
v19 = &v16;
hello((__int64)&KeyMatrix_Array, (unsigned __int8 *)&v17); // 9
v22 = &v17;

v23 = 0;
v9 = 3;
v10 = 3;
v11 = &v8;
hello((__int64)&unk_404068, (unsigned __int8 *)&v9); // 9
v23 = &v9;

// v29

void *v24[8]; // 中间变量矩阵

// 初始化v24,加前缀
memset(v24, 0, sizeof(v24));
for (i = 0; i < 7; ++i)
{
v28 = malloc(0x10u);
*v28 = 3;
v28[1] = 3;
*((uint64_t *)v28 + 1) = malloc(0x24u);
v24[i] = v28;
}

void *Memory[8]; // 指向44位flag生成的7个矩阵,有前缀
Morpheus(Memory, &Str); // str长度44

// Dst: 操作结果7个矩阵
// Memory: 指向44位flag生成的7个矩阵
// v20: 辅助的4个矩阵
// v24: 中间变量矩阵7个矩阵

// 7矩阵格式:36Byte一个矩阵,252Byte,无前缀

char Dst[256];
memcpy(Dst, &unk_4040C0, 0xFCu);

for (int i = 0; i < 7; i++)
{
// 如果v20的行列式的值不为0, 则进行乘法运算, v24暂存中间结果
if ((unsigned int)Neo((&v20)[i % 4]))
guess((unsigned __int8 *)(&v20)[i % 4], (__int64)Memory[i], (__int64)v24[i]);

if (byebye((unsigned __int8 *)v24[i], &Dst[36 * i]))
printf("Wrong. Try again.\n");
return 0;
}

printf("Correct! Your flag has passed the test.\n");
return 0;
}

解密过程也很简单,data左乘k的逆矩阵就是flag。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# 3阶矩阵赋值
def hello(source: list) -> list:
return [source[3 * i : 3 * i + 3] for i in range(3)]


# 矩阵乘法
def matmul(a: list[list], b: list[list]) -> list[list]:
c = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
for i in range(3):
for j in range(3):
for k in range(3):
c[i][j] += a[i][k] * b[k][j]
return c


dst = [488, 448, 385, 1367, 1235, 1054, 317, 273, 258, 620, 320, 325, 1463, 748, 755, 1513, 797, 822, 333, 266, 402, 189, 159, 245, 189, 161, 257, 354, 327, 547, 251, 192, 294, 401, 291, 439, 240, 253, 269, 670, 704, 753, 145, 159, 164, 553, 315, 302, 1252, 728, 711, 1469, 805, 740, 455, 337, 213, 254, 229, 110, 300, 160, 158, 0]

k_ = [
[[7, -2, -2], [3, -1, 0], [-6, 2, 1]],
[[-26, 8, 3], [24, -7, -3], [-7, 2, 1]],
[[2, -2, -1], [-1, 1, 1], [2, -1, -2]],
[[-1, 5, -2], [1, -6, 3], [-1, 8, -4]],
]


def main():

for i in range(7):
dst_ = hello(dst[9 * i : 9 * i + 9])
memory_ = matmul(k_[i % 4], dst_)
for j in range(3):
for k in range(3):
print(chr(memory_[j][k]), end="")
print("\b\b\b", end="")


if __name__ == "__main__":
main()
# 0xGame{78d51c59-6dc3-30d2-1276-18e13f80c478}

Justsoso | Review

由题,flag 用 key 加密经过 base64 编码等于 encryptedFLAG,那么只要知道 key 并逆向 ReversC4.encrypt 即可。

1
encryptedFLAG==b64encode(ReversC4.encrypt(flag, key))

getKey()在 native 层,IDA 分析 so 文件源码:

image-20250222145157414

看上去挺复杂,其实就是把 source 二倍后异或 0x7F,这样就得到了 key

1
2
3
4
5
6
7
8
public static int[] getKey() {
String source = "just_0xGame_so";
int[] key = new int[14];
for (int i = 0; i < source.length(); i++)
key[i] = 2 * (int) source.charAt(i) ^ 0x7F;

return key;
}

加密过程很好逆向,其中 inital、i、i2 只要随便编一个 44 位的 flag 放进 encrypt 里面跑一下,就能知道末状态的值,将他们作为初始值放进 decrypt 里面即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public static byte[] decrypt(byte[] bArr, int[] iArr) {
int length = bArr.length;
int[] initial = { 107, 11, 190, 182, 97, 252, 84, 71, 59, 218, 18, 68, 241, 141, 155, 240, 170, 78, 43, 175, 98, 87, 239, 53, 228, 81, 157, 44, 13, 26, 158, 179, 79, 210, 234, 251, 163, 249, 130, 120, 211, 219, 129, 186, 69, 225, 41, 91, 36, 15, 171, 123, 243, 140, 138, 32, 173, 166, 159, 253, 236, 200, 176, 152, 113, 57, 94, 208, 116, 144, 8, 119, 99, 23, 104, 181, 52, 196, 162, 49, 224, 213, 143, 5, 192, 46, 118, 75, 114, 136, 160, 178, 205, 149, 65, 29, 20, 102, 223, 148, 39, 115, 124, 127, 229, 255, 122, 50, 117, 83, 109, 216, 17, 88, 128, 106, 125, 60, 188, 61, 244, 95, 73, 66, 195, 82, 27, 28, 147, 62, 189, 154, 185, 112, 30, 235, 86, 9, 139, 153, 22, 24, 237, 14, 54, 203, 164, 48, 16, 204, 230, 232, 156, 3, 133, 214, 74, 161, 70, 220, 238, 47, 183, 10, 2, 180, 131, 169, 67, 58, 1, 250, 254, 6, 207, 199, 198, 42, 247, 33, 221, 110, 184, 34, 25, 31, 217, 168, 137, 222, 146, 72, 89, 193, 103, 92, 256, 4, 209, 45, 226, 194, 202, 37, 172, 77, 177, 90, 100, 80, 174, 12, 55, 19, 197, 245, 231, 40, 51, 93, 212, 151, 96, 227, 201, 121, 108, 126, 21, 63, 35, 165, 7, 145, 56, 111, 187, 38, 105, 150, 85, 242, 132, 134, 142, 64, 233, 206, 135, 246, 167, 101, 215, 191, 76, 248 };
int i = 44;
int i2 = 12;
for (int i3 = length - 1; i3 >= 0; i3--) {
int i4 = initial[i2];
int i5 = initial[i];
bArr[i3] = (byte) (bArr[i3] ^ ((byte) initial[(i4 + i5) % 256]));
initial[i2] = i5;
i2 = (i2 - i4 + 256) % 256;
initial[i] = i4;
i = (i + 255) % 256;
}

return bArr;
}

跑一下:

1
2
3
4
5
6
7
8
9
public static void main(String[] args) {
String encryptedFLAG = "nB9RCjwReif5P1H1MYO6m/hucCGjI6EE9wWEx/E4N+bO5k5ior6MnqAGQfc=";
String testFlag = "0xGame{111111111111111111111111111111111111}";
int[] key = getKey();
encrypt(testFlag.getBytes(), key);

String FLAG = new String(decrypt(Base64.getDecoder().decode(encryptedFLAG), key));
System.out.println(FLAG); // 0xGame{fd51ce4b-4556-4cf9-9430-67480614e43b}
}